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Jump Risk in China’s Stock Market

Abstract

Understanding jump risk is important in modeling risk management and pric-

ing of exotic and deep out-of-the money options. This study examines the char-

acteristics of jump risk, portion of return volatilities attributed to jump risk, and

their forecasting power for China’s Shanghai Stock Exchange. Jump returns are

found to account for 30% to 50% of total returns and market systematic jump risk

is an important pricing factor for daily returns. The absolute magnitude of jump

beta is, on average, similar to the absolute magnitude of continuous beta. However,

the contribution of jump risk to total risk is limited, indicating that jump compo-

nents in the stochastic process of asset price are rare events, but have tremendous

impacts on the prices of common stocks in China. This study also include evidence

that accounting for jump components does improve the performance of volatility

forecasting for the equity portfolio denominated in US dollars, but not for equity

portfolios denominated in domestic currency and in government bond portfolios.



Jump Risk in China’s Stock Market

1 Introduction

Previous theoretical and empirical studies have shown that there are two un-

derlying forces driving the volatilities of financial series: a smooth, continuous com-

ponent and a discrete, jump component. It is very important to take into account

jump risk in the modeling framework for risk management and pricing of exotic

and deep out-of-the money options. Using high-frequency returns from China, in

this study we examines the impact of jump risk in pricing individual stocks, as

well as the gains from explicitly utilizing the jump component in forecasting the

volatilities of various equity and bond portfolios.

The fact that jump components of realized volatilities play an important role

in many financial variables has led to a flurry of empirical research on the statistical

and economic importance of jump risk in realized volatilities and how jump risks

can be used to forecast realized volatilities (See for example, Ait-Sahalia, 2004;

Andersen, Benzoni, and Lund, 2002; Eraker, 2004; Eraker, Johannes, and Polson,

2003; Maheu and McCurdy, 2004). Among them, Dunham and Friesen (2007)

examine the relative importance of jump risk using tick-by-tick data of the S&P

100 Index constituents, three U.S. equity indexes and three U.S. Treasury securities

over the period 1999 through 2005. They find that jump risk accounts for 15 % to

25% of the total risk, and the size of jump beta is about 36% of the size of the
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continuous beta. Andersen, Bollerslev, and Diebold (2007) investigate the dynamics

and comparative magnitude of jumps on a decade of five-minute high frequency

returns for the DM/$ exchange rates, the S&P 500 market index, and the thirty-

year U.S. Treasury yield. They incorporate the jump components in the volatility

forecast model and demonstrate significant gains in the forecast accuracy across

various prediction horizons. However, scant empirical research along this line has

extended beyond the U.S. financial markets.

This study is believed to be the first empirical attempt to (1) examine the

jump risk of daily stock returns with assessments of the relative contribution of

jump risk to systematic risk in individual stocks and (2) explore the potential ben-

efits in terms of volatility forecast accuracy by explicitly differentiating the jump

and continuous sample path components in the Chinese financial markets. With

the accelerating pace of financial development in China and financial integration in

the rest of the world, financial products are growing exponentially, both in quantity

and in complexity. However, the empirical measurement and assessment of risks,

or volatilities, associated with these financial products are still unknown to most

domestic and foreign investors. Understanding the characteristics of jump risk in

various financial assets and portfolios is useful for several reasons. In option pric-

ing, the continuous Brownian part and a discontinuous jump part have different

requirements and possibilities in hedging; in portfolio allocation, the demand for

different classes of assets can be optimized, subject to risks being continuous or

jump. In risk management, the identified jump risk helps better assess value-at-

3



risk and other tail statistics over short horizons; in mutual funds management, the

ability to disentangle jumps from volatility is critical to managing the exposure

to unexpected events in China. Also, for the policy makers, understanding jump

risk has important regulation and policy implication, given the current debate on

developing a stock index future/option market in China.

This study demonstrate that jump risk is an important pricing factor for

individual stock returns. When jumps occur, it is about one-third to one-half of

the size of the daily return. Besides, jump risk accounts for about one-third of the

total risk in individual stocks and in stock and bond indexes. For every percentage

point increase in market jump returns beyond current expectations, the return

on an average SSE 50 Index constituent drop is, on average, 0.6298%, while for

every percentage point that continuous return increases, the average SSE 50 Index

constituent return increases by 1.0079%.

The results of this study also indicate that accounting for jump components in

the SSE B Share Index improves the performance of volatility forecasting models.

However, the potential benefit of separately measuring the continuous and jump

components of the realized volatility is not immediately evident from a volatility

forecasting perspective for the A Share and Government Bond markets.

The results are equally important for both diversified and non-diversified port-

folios in China. Jump risk is an important pricing factor of daily returns, although

it plays a limited role in forecasting realized volatilities.
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The study proceeds as follows. In Section 2 the statistical procedures used to

estimate jump risk and to decompose total risk and systematic risk into continuous

and jump components are presented. Data and the sampling process are described

in Section 3. In Section 4 the empirical findings are presented, while Section 5 offers

concluding remarks.

2 Methodology

2.1 Estimation of jump risk from high-frequency data

Let p(t) denotes the log price of an asset at time t 1 . The continuous-time

jump diffusion process can be expressed as a stochastic differential equation:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤ T, (1)

where µ(t) is a continuous and locally bounded variation process, σ(t) is a stochastic

volatility process, W (t) is a standard Brownian motion, and q(t) is a counting

process. dq(t) = 1 when a jump occurs at time t and dq(t) = 0 otherwise. κ(t)

refers to the size of the jump when a jump occurs. The quadratic variation for the

1 The discussion in this section is largely drawn from Andersen, Bollerslev, and Diebold
(2007), Dunham and Friesen (2007), and Tauchen and Zhou (2006).
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cumulative return process, r(t) ≡ p(t)− p(0) is given by:

[r, r]t =
∫ t

s=0
σ2(s)ds+

∑
0<s≤t

κ2(s). (2)

Let the discretely sampled ∆-period returns be denoted by rt,∆ ≡ p(t) −

p(t −∆). Following previous studies (See for example, Andersen, Bollerslev, and

Diebold, 2007; Dunham and Friesen, 2007; Tauchen and Zhou, 2006), the daily

realized volatility is defined as the summation of the corresponding 1/∆ high-

frequency intradaily squared returns,

RVt+1(∆) ≡
1/∆∑
j=1

r2
t+j∆,∆. (3)

As shown in Andersen, Bollerslev, Diebold, and Labys (2003), the realized

volatility converges uniformly in probability to the increment of the quadratic

variation process when the sampling frequency of the underlying returns increases.

That is,

RVt+1(∆)→
∫ t

s=0
σ2(s)ds+

∑
o<s≤t

κ2(s). (4)

Following Barndorff-Nielsen and Shephard (2004, 2006), the standardized re-

alized bipower variation is defined as:

BVt+1(∆) ≡ µ−2
1

1/∆∑
j=2

∣∣∣rt+j∆,∆∣∣∣∣∣∣rt+(j−1)∆,∆

∣∣∣, (5)
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where µ−2
1 =

√
2/π represents the average absolute value of a random variable that

follows a standard normal distribution. As the sampling frequency increases,

BVt+1(∆)→
∫ t

s=0
σ2(s)ds. (6)

Therefore, as shown in Barndorff-Nielsen and Shephard (2004), the contribu-

tion to the quadratic variation process due to the discontinuities (jumps) in the

underlying price process may be consistently estimated by:

RVt+1(∆)−BVt+1(∆)→
∑

0,s≤t
κ2(s). (7)

A simple measure of daily volatility due to discontinuities (jumps) suggested

by Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev, and Diebold

(2007) is:

J̃t+1 = max[RVt+1 −BVt+1, 0]. (8)

2.2 Shrinkage estimation and noise correction

The simple nonparametric jump estimates defined by the difference between

the realized volatility and the bipower variation (8) are theoretically appropriate

only if the sampled returns are increasingly finer, or ∆→ 0. The measurement error

is inevitable for any empirical implementations with a fixed sampling frequency, or

∆ > 0. Although all theoretically infeasible negative estimates of squared jumps
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have been truncated in (8), the resulting J̃1/2 series still contains a large number of

nonzero small positive values. It is unreasonable to reject the possibility that these

very small estimates of “jumps” are actually part of the continuous sample path

variation process or simply measurement errors due to the finite-sample problem.

Therefore, it is desirable to treat only those large values of RVt(∆)−BVt(∆) as the

jump component and to distinguish significant jumps from those insignificant ones

based on the asymptotic distribution result of the standardized difference between

RVt and BVt.

Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen and Shephard

(2006) show that, in the absence of jumps, the ratio statistic, as defined in Tauchen

and Zhou (2006), is:

RJt =
RVt −BVt

RVt
, (9)

and converges to a standard normal distribution when scaled by its asymptotic

variance:

ZJt =
RJt√

(1/m)×
[
(π/2)2 + π − 5

]
×max

(
1, TPt/BV 2

t

) → N(0, 1). (10)

where:

TPt ≡ m× µ−3
4/3 ×

m

m− 2

m∑
j=3

∣∣∣rt,j−2

∣∣∣4/3∣∣∣rt,j−1

∣∣∣4/3∣∣∣rt,j∣∣∣4/3 → ∫ t

t−1
σ4
sds, (11)
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and

µk = 2k/2 ×
Γ
[
(k + 2)/2

]
Γ(1/2)

, k > 0. (12)

An abnormally large value of ZJt provides statistical evidence in favor of a “sig-

nificant” jump over the time period [t, t+ 1].

Based on simulation and Monte Carlo experiments, Tauchen and Zhou (2006)

confirm the robustness and satisfactory performance of the ratio-statistics (10) for

a wide range of market microstructure contaminants.

Trading days with realizations of ZJt in excess of some critical value (Φα)

are then identified as “significant” jumps. The jump component of the realized

volatility on that day is defined as:

Jt,α = I[ZJt > Φα] · (RVt −BVt), (13)

where I[·] is the indicator function. The continuous sample path component vari-

ation is estimated as:

Ct,α = I[ZJt ≤ Φα] ·RVt + I[ZJt > Φα] ·BVt, (14)

such that (13) and (14) sum to the total realized volatility on any given trading day.

As long as Φα > 0, (13) and (14) ensure that Jt,α and Ct,α are both nonnegative.
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2.3 Decomposition of jumps

Following Dunham and Friesen (2007), if allowance is made for different contin-

uous and jump systematic risks, the returns can be decomposed into four different

components 2 :

Rit = αt + β1t

(
RMt − J jump

Mt

)
+ β2tJ

jump
Mt +

(
J jump
it − β2iJ

jump
Mt

)
+ εit. (15)

In Equation (15), J jump
t = Isign

t ×
√
I jump
t (RVt −BVt), where Isign

t equals to 1 if Rt

is positive and −1 if Rt is negative, and I jump
t equals to 1 if a jump occurs on day

t and zero otherwise. Equation (15) decomposes the total return of stock i into

four components: continuous systematic return (β1t(RMt−JMt)), jump systematic

return (β2tJMt), jump non-systematic return (Jit − β2iJMt), and continuous non-

systematic return (εit).

The two-step procedure proposed by Dunham and Friesen (2007) is then used

to estimate the systematic and non-systematic jump risks for all individual stocks.

First the systematic risk is decomposed into both continuous and jump risks by

regressing total returns on continuous market return and market jump:

Rit = αt + β1t

(
RMt − J jump

Mt

)
+ β2tJ

jump
Mt + ηit. (16)

2 The discussion in this section is largely drawn from Dunham and Friesen (2007).
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The non-systematic jump risk is estimated from:

κ̂it = J jump
it − β̂2tJ

jump
Mt , (17)

and the continuous non-systematic risk, eit is estimated from:

Rit −
[
α̂t + β̂1t

(
RMt − J jump

Mt

)
+ β̂2tJ

jump
Mt + κ̂it

]
. (18)

2.4 Accounting for jumps in realized volatility modeling and forecasting

The long-memory dependence in financial market volatility has been docu-

mented in numerous empirical studies. These observations in turn motivated re-

searchers to estimate long-memory type ARFIMA models for realized volatilities

(See Andersen, Bollerslev, Diebold, and Labys (2003), Areal and Taylor (2002) and

others). Along this line of modeling technique, this study employs the simple-to-

estimate HAR-RV class of volatility models proposed by Corsi (2004). The formu-

lation of the HAR-RV model is an extension of Müller, Dacorogna, Dave, Olsen,

and Pictet (1997)’s Heterogeneous AR models. The conditional variance of the

discretely sampled returns is parameterized as a linear function of lagged squared

returns over the identical return horizon together with the squared returns over

longer and/or shorter return horizons.

A typical HAR-RV model, following Andersen, Bollerslev, and Diebold (2007),
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for the one-day-ahead forecast of daily realized volatility can be expressed as:

RVt+1 = β0 + βDRVt + βWRVt−4,t + βMRVt−21,t + εt+1, (19)

where RVt−4,t (or RVt−21,t) are the 5 (or 22) day moving average of the realized

volatilities up to the day of t. It is also straightforward to incorporate realized

volatilities over other horizons as additional explanatory variables into the regres-

sion, but the daily, weekly, and monthly measures offer the natural economic in-

terpretation to the above model. The HAR-RV one-day-ahead volatility forecast

model can be extended to longer horizons. Given the non-parametric measurement

of the jump component defined in (8), this study uses the explanatory power of J̃

in the forecast model of realized volatilities. The forecast model (19), as shown in

Andersen, Bollerslev, and Diebold (2007), thus becomes:

RVt,t+k = β0 + βDRVt + βWRV t−4,t + βMRV t−21,t + βJ J̃t + εt,t+h. (20)

The error term εt will be serially correlated up to order k−1 with observation every

period and k > 1. Therefore, in the results this study relies on the Newey-West het-

eroskedasticity consistent covariance matrix estimator to obtain the corresponding

standard errors of the estimates. In addition 5, 10, and 44 lags areused for the daily

(k = 1), weekly (k = 5), and monthly (k = 22) regression estimations, respectively.

In order to consider the practical use of volatility models and forecasts, we em-

ploy a nonlinear HAR-RV-J model, proposed by Andersen, Bollerslev, and Diebold

12



(2007), that involves standard deviations instead of variances is uded as follows:

(RVt,t+k)
1/2 = β0 + βDRV

1/2
t + βW (RV t−4,t)

1/2 + βM(RV t−21,t)
1/2 + βJ J̃

1/2
t + εt,t+k.

(21)

Next, building on the explicit decomposition of daily realized volatility into a sig-

nificant jump component and a corresponding continuous component in (13) and

(14), the HAR-RV-J model is further extended to include the continuous sample

path variability and jump variation as explanatory variables on the right side of

the regression.

Similar to the definition of RVt,t+k, Jt,t+k and Ct,t+k are defined as the moving

averages of k days jump and continuous sample path variability measures, respec-

tively. Following Andersen, Bollerslev, and Diebold (2007), the new HAR-RV-CJ

model is expressed as

RVt,t+k = β0+βCDCt+βCWCt−4,t+βCMCt−21,t+βJDJt+βJWJt−4,t+βJMJt−21,t+εt,t+k.

(22)

The non-linear HAR-RV-CJ model can also be expressed in standard deviation

forms as:

RV
1/2
t,t+k = β0 + βCDC

1/2
t + βCW (Ct−4,t)

1/2 + βCM(Ct−21,t)
1/2 (23)

βJDJ
1/2
t + βJW (Jt−4,t)

1/2 + βJM(Jt−21,t)
1/2 + εt,t+k.
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3 Data

The sample includes 47 of the 50 constituents of the Shanghai Stock Exchange

(SSE) 50 Index and SSE Composite Index, Shanghai A Share Index, Shanghai B

Share index, and the Government Bond Index. Three firms, Aluminum Corporation

of China Limited, China Shenhua Energy Company Limited, and PetroChina Com-

pany limited, are excluded from the sample because only limited data is available.

Five-minutes and daily price data are collected from The Analyst, who developed

highly regarded technical analysis software in China.

The SSE 50 Index contains the 50 stocks with the largest capitalization and

with the highest liquidity. The 50 stocks only represent 5.52% of the total number

of listed stocks on the Shanghai Stock Exchange. However, it represents 65.82% of

the total market capitalization and 41.51% of the tradable market capitalization 3 .

Visual investigation of the quotes reveals that there are a large number of

erroneous quotes for January 06, 2004 when the data first became available, for

December 30, 2006, for January 16, 2007, and for November 2006. The above

sample periods are excluded from thisstudy.

Following Dunham and Friesen (2007), the sandwich filter method is used

to eliminate quotations that are 10% or further away in absolute value of the

surrounding quotes.

3 Source: http://www.sse.com.cn/.
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4 Empirical results

4.1 Summary statistics

In Table 1 the summary statistics for total risk and of the continuous and jump

components are shown. Not surprising, the average SSE 50 stock is about twice as

risky as a stock index and about 20 times riskier than the government bond index.

It indicates that investing in equity index portfolios can eliminate about half of

the risks in individual stocks. For both individual stocks and indexes, continuous

risk account for the majority of total risk. For an average stock, continuous risk

contributes about 90% of the total risk. Comparatively, jump risk contributes a

higher percentage to the total risk in individual stocks than in stock indexes. For

individual stocks, the average correlation between the continuous and jump com-

ponents of the total risk is 0.0349. The correlation for stock indexes ranges from

0.0149 for the SSE 50 index to 0.1203 for A shares. There is a negative correlation

between the continuous and jump components of risk for the government bond

index.

Insert Table 1 about here.

Total risks are lower than the sum of continuous and jump risks due to the

“diversification” effect, partially attributed to the low or even negative correlations

between continuous and jump risks. For example, for an average SSE 50 stocks,
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the sum of continuous and jump risks is 3.45 percent compared to 2.7891 percent

for the total risk.

Table 2 reports the summary statistics for jump risk, for both individual stocks

and indexes on all sample days (Panel A), on days with high volatility defined to

be days on which an asset’s realized volatility is above its median realized volatility

over the entire sample period (Panel B), and on days when market jumps occur

(Panel C).

Insert Table 2 about here.

The results in Panel A indicate that a jump is more likely to occur for an

individual stock than on a stock index and the average absolute jump size for

an individual stock is approximately three times that of an index. For individual

stocks, a jump occurs, on average, once every month (8.6% of the trading days).

The SSE Composite, A- and B-share, and 50 indexes generate fewer than 8 jumps

(3% of the trading days) a year. In contrary, the Government Bond index yields

90 jumps a year. The average jump size of a stock is 2.8 times of that of the

average jump for the stock indexes and is 21 times of that of the government bond

index. Jumps occur much more often on the government bond index (90 times a

year), although the average jump size is much smaller (5% of the size of a jump

on a stock). It indicates that jumps can either significantly increase or

significantly decrease daily returns. About 15% of an individual stocks’ total

risk can be attributed to jump risk, measured by the variance of jump returns,
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ranging from 3% to 80%. For indexes, the contribution of jump risk to total risk

ranges from 1.08% for the B Share Index to 14.42% for the Government Bond

Index.

In Panel B significant jumps that occur on days of high realized volatilities are

examined. Jumps occur slightly more frequently and jump returns are higher than

unconditional jump returns (Panel A). Compared to unconditional jumps, the size

of jump returns relative to the absolute daily return is lower, although the portion

of total variance attributed to jump variance does not change.

The summary and distribution properties of jumps conditional on the occur-

rence of market jumps are reported in Panel C. Jumps of the Composite index are

highly correlated with those of the A Share Index, but not with those of the B

Share Index. Jumps of B Share Index occur 5.5% on the days when market jumps

occur, compared to 94% for the A Share Index. Market jump is defined as a jump

in the SSE Composite Index. Jumps occur on an SSE 50 stock about 22% of the

time when a market jump occurs. The relative magnitude of absolute jump returns

increased to about 60%. When the market jump occurs, 18% for the market risk is

attributed to jump risks, indicating that jump risk is an important factor driving

total risks.

Insert Table 3 about here.
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Table 3 summarizes moment statistics of the daily realized volatility and its

jump component for a cross section of individual stocks consisting of the Shanghai

Stock Exchange 50 Index and four representative indices in the Shanghai Stock

Exchange 4 . Panel A reports the cross-sectional averages of relevant statistics cal-

culated for each individual stock. The descriptive statistics reported in Panel B

through E depict the time-series characteristics of the daily realized volatility and

its jump component for four selected indices.

Several common features emerge immediately. First it is evident that daily re-

alized volatilities for indices are much smaller in magnitude than those for individ-

ual stocks in the sample. This is consistent with the empirical evidence about total

risk and jump risk that was documented in Table 1. Secondly, a very large positive

skewness in daily realized volatilities and their jump components for all the indices

under study is observed, indicating a small number of events occasionally arriving

at the market with some tremendous disturbing impacts on the evaluations of the

underlying asset prices in the portfolios. Finally, the last column of Table 3 reports

the Ljung-Box test statistics for serial correlation for up to 10th order for each of

the variables in the row 5 . Daily realized volatility and the jump component of the

4 In what follows, we focus on Shanghai Stock Exchange A Share Index, B Share Index,
Government Bond Index, and Shanghai Stock Exchange 50 Index. The Shanghai Stock
Exchange Composite Index is omitted largely due to its significant similarity in the
performance to the A Share Index. As a matter of fact, the constituent stocks in the A
Share Index overwhelmingly dominate the Composite Index, which is a weighted average
of market cap across A Share and B Share stocks by design. With a rapid expansion
of the A share market cap relative to the B share’s, it is not surprising to observe the
performance of the Composite Index increasingly converge to the performance of the A
Share Index.
5 In Panel A, the cross-sectional sample mean of Ljung-Box statistics for each individual
stocks are reported instead.
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realized volatility, measured as J̃ , exhibit high degrees of serial correlation. How-

ever, it is equally noteworthy that, in Panel B through E, Ljung-Box statistics for

the jump component, J̃ and J̃1/2, across all four indices are remarkably lower than

the corresponding test statistics for the realized volatility, RV and RV 1/2. This

indicates the statistically significant dynamic dependence observed in the overall

quadratic variation largely originates from the dynamic dependence in the continu-

ous sample path price movement, rather than the discontinuous sample path price

process, or jumps. This conjuncture is also confirmed at individual stock level, as

the last column of Panel A shows, where BV and BV 1/2 are the bi-power variation

measures for the continuous sample path.

Figure 1 provides visual observations of the daily realized volatility and its

jump component for the selected indices for the Shanghai Stock Exchange and

readily confirms the conclusions from previous tables.

The top left graph in each panel plots the daily realized volatility in standard

deviation form, or RV 1/2. As is evident from the tables, the sizes of daily realized

volatilities are comparable across the three stock indices in panel (a), (b), and (d),

while the government bond index has much smaller daily fluctuations in panel (c).

Insert Figure 1 about here.

The top right graph in each panel shows the jump components, defined as

J̃1/2. For three stock indices, the jump components of daily realized volatilities
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exhibit simultaneous spikes concentrating on three specific periods of time; July to

September of 2005, June to August of 2006, and an episode from January to the

end of our sample period in 2007. Correspondingly, similar patterns are found in

the overall realized volatility, indicating that many realized volatilities are directly

linked to jumps in the underlying equity price process. However, the fluctuations

of the jump components for the government bond index in panel (c) are more

tranquil compared to the stock indices and show little synchronization with the

equity market.

The bottom left graphs in all panels show the ZJt statistic defined in (10). It

distinguishes statistically significant jump components from those jump estimates

occurring concurrently with large continuous variations, and therefore likely due

to measurement errors or market microstructure contaminants. The horizontal line

indicates the critical value that identifies significant jumps corresponding to α =

0.99. We now know, among three episodes having clustered spikes in daily realized

volatility, two of them are indeed due to sudden increases in jump components. The

other one, occurred in 2006, mainly results from concurrent increases in volatilities

of continuous sample path since we barely observe statistically significant jumps in

the year of 2006 for three stock indices. Interestingly, the frequency of statistically

significant jumps for the government bond index are markedly higher than those

for stock indices, although the size of these significant jumps in the bond market

is, relatively, much smaller. This phenomenon is evident from bottom right graphs

and consistent with the numerical illustrations in Table 2.
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Insert Figure 2 about here.

In Figure 2 is ploted the smoothed jump intensities and jump sizes for each

of four indices to illustrate the complex dynamic dependence in the significant

jump time series. This figure graphs the exponentially smoothed average monthly

jump intensities (solid line) to the left scale and sizes of the significant jumps

based on α = 0.99 (dash line) to the right scale. The jump sizes are expressed

in standard deviation form of (13), or J
1/2
t,0.99. The top left panel for the A Share

Index and the bottom right panel for the SSE 50 Index share a similar pattern of

temporal dependence in the jump arrival processes and jump sizes, while the other

stock index for B Shares in the top right panel suggests a sharp increase in jump

intensities and sizes in 2007. In contrast, the government bond index in the bottom

left panel appears to have a systematic rising trend in both the jump intensities

and sizes over the sample period.

4.2 Decomposition of systematic risk and total risk

In Panel A of Table 4, the systematic risk of a stock is decomposedalso into

jump and continuous systematic risk according to Equation (15). The total return

beta, proxy of the systematic risk, is estimated from regressing daily individual

stock returns on those of the SSE Composite Index. The average systematic risk,

measured by total return beta is 1.0062, indicating the systematic risk of an average

stock in the SSE 50 index is similar to that of the market. Based on the official
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definition provided by the Shanghai Stock Exchange, the constituents of the SSE

50 index are the “50 largest stocks of good liquidity and representativeness from

the Shanghai security market by scientific and objective method”. Previous studies

have documented that companies of the highest capitalization are most influential

in the Shanghai security market.

Insert Table 4 about here.

Panel A of Table 4 shows that jump risk is an important pricing factor for

daily returns. For every percentage point increase in market jump returns beyond

current expectations, the return on an average SSE 50 Index stock drops on average

of 0.6298%, while for every percentage point that continuous return increases,

the average SSE 50 Index constituent return increases by 1.0097%. The result

is different from that reported in Dunham and Friesen (2007) on the U.S. stock

market. They find that the size of jump beta is 36% of the size of the continuous

beta.

Pane B of Table 4 provides information on the importance of each factor in

explaining the volatility of daily SSE 50 Index returns. It reports the percentages

of total risk, measured by the variance of daily returns, attributed to four com-

ponents: (1) systematic jump risk (= β2
2iσ

2
M,jump ≡ β2

2i Var(RJMt)), (2) systematic

continuous risk (= β2
1iσ

2
M,cont ≡ β2

1i Var(RMt−RJMt)), (3) nonsystematic jump risk

(= σ2
K̂it
≡ Var(K̂it)), and (4) nonsystematic continuous risk (= σ2

êit
≡ Var(êit)).

On average, the systematic continuous risk is 37% of the total risk and the non-
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systematic continuous risk accounts for 63% of the total risk. The majority of the

total risk is attributed to the continuous risk. The systematic and nonsystematic

jump risk attribute equally to the total risk at 0.15% each. 6 The low contribution

of jump risk to total risk is due to the low correlation between market jumps and

jumps of individual stocks. As shown in Table 2, on average a jump occurs on an

individual SSE 50 stock about 22% of the time when a market jump occurs.

The results illustrate that it is equally important to study the jump risk for

both diversified and non-diversified portfolios. The results are qualitatively similar

to those reported by Dunham and Friesen (2007) for U.S. stock markets.

4.3 Accounting for jumps in realized volatility modeling and forecasting

Turning to the empirical estimates of (20) and (21), the results are shown for

four selected indices in panel A through D in Table 5. The first three columns report

coefficient estimates from the linear HAR-RV-J model and the last three columns

for the nonlinear model. Across the four indices, estimates of βD remain significant,

regardless of the model specifications and forecast horizon, confirming the highly

persistent volatility dependence in the Shanghai Stock Exchange’s equity and bond

markets. Interestingly, as to the estimates of βW , they appear to be important and

significant in the B share and the government bond market over various forecast

horizons, but powerless in the A share stock market. However, the estimates of βM

6 The average percentage contributions of different components do not add up to 100%
because the covariance among different risk components has been ignored.
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exactly reverse the above conclusion for βW ; they are economically and statistically

significant for the A Share Index and SSE 50 Index, but not for the B Share Index

and the Government Bond Index across various forecast horizons.

Insert Table 5 about here.

The estimates of βJ , characterizing the relative impact of the lagged jump

component on the realization of the current daily volatility, are systematically

negative and statistically insignificant at conventional levels across all markets,

except for the B Share Index . The insignificance of βJs is not surprising based on

the visual observation of the J̃ series in Figure 3. Although J̃ , depicted in the top

right graphs, seems to track the variability of realized volatilities in the left graphs,

the statistical tests in the bottom left graphs indicate variations in the continuous

sample path have captured most of the variations in overall realized volatilities

leaving a relatively small portion to be explained by the jump components. Among

the four selected indices, J̃ plays a relatively important role in forecasting the

realized volatilities of the B Share Index where the jump component significantly

increases the following day’s realized volatility over various forecast horizons. For

instance, a one unit increase in daily realized volatility will, on average, increase the

daily realized volatility on the following day by 0.252+0.401/5−0.016/22 = 0.3315

for days when J̃ = 0 in the first column of Panel B. In contrast, if part of the realized

volatility is due to the jump component, the increase in realized volatility on the

following day will further rise by another 2.972 times the jump component. The
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induced realized volatilities on the next day can be 10 times different in magnitude

between a day when a one unit increase in realized volatility exclusively comes

from the jump component and a day when the same one unit increase in realized

volatility is purely due to the variation in the continuous sample path. For the A

Share Index, Government Bond Index, and SSE 50 Index, jump components play a

minor role that generally dampens the future realized volatility once jumps occur.

This particular finding is consistent with regression results in Andersen, Bollerslev,

and Diebold (2007), who implement the test on the high frequency data for the

US market.

The benefit of using high frequency data in modeling and forecasting volatility

is most evident when the R2 of the HAR-RV-J models is compared to the R2 of

the HAR-RV models. In HAR-RV models, the jump component is absent and the

realized volatilities on the right side, but not the left side of equation (22), are

replaced by the corresponding lagged squared daily, weekly, and monthly returns.

Large gains in forecast accuracy through the use of realized volatility, together

with the separate jump components, highlight the added value of high frequency

data in forecasting the realized volatilities over various forecast horizons. However,

the importance of the jump component as an explanatory variable in the volatility

forecast regressions is indeed limited for the Chinese market.

Insert Table 6 about here.
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An extension of the HAR-RV-J model explicitly decomposes the explanatory

variable on the right side into continuous sample path variability and the jump

variation, as in (22) and (23). The measurement and separation of Ct and Jt build

on the nonparametric estimation and construction of test statistic ZJt described

in (10), (13), and (14). In the following estimations, the significant jump series

depicted in the bottom right graph of each panel in Figure 1 is utilized. The first

three columns in Table 6 report coefficient estimates from the linear HAR-RV-CJ

model for four selected indices. Most of the estimates for jump coefficients, βJD,

βJW , and βJM , are insignificant, except for the B Share Index. The evidence that

most of the continuous coefficient estimates, βCD, βCW , and βCM , appear to be sig-

nificant indicates that the predictability of realized volatility is almost exclusively

due to the continuous sample path components. However, the importance of jump

component to forecast the realized volatility is noteworthy again in the B Share

market. Measurements of daily and monthly-averaged jump components exert eco-

nomically large and statistically significant impacts on the realized volatility over

various forecast horizons. These same qualitative results carry over to the nonlinear

HAR-RV-CJ models reported in the next three columns of Table 6.

Insert Figure 3 about here.

To further illustrate the predictability of the HAR-RV-CJ model, in Figure 3

the daily, weekly, and monthly realized volatility is plotted in standard deviation

form (solid line to the left scale) together with their corresponding forecasts (dash
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line to the right scale) obtained from the nonlinear HAR-RV-CJ model in the last

three columns in Table 6 for each index. Across all of the markets and forecast hori-

zons, there is evidently a close coherence between the different pairs of realizations

and forecasts.

The results from Table 5 and Table 6 suggest that accounting for jump com-

ponents in the B Share Index improves the performance of volatility forecasting

models. However, the potential benefit of separately measuring the continuous

and jump components of the realized volatility is not immediately evident from a

volatility forecasting perspective for the A Share and the Government Bond mar-

kets. Further work along these lines may construct models for the jump component,

Jt, and the continuous sample path component, Ct, separately. Then the individual

models of Jt and Ct can either construct out-of-sample forecasts for each component

or combine together to forecast the overall realized volatility RVt = Jt + Ct.

5 Conclusion

Theoretical and empirical studies have shown that there are two underlying

forces driving the realized volatilities of a financial series: a smooth, continuous

component and a discrete, jump component. The importance of empirically dis-

entangling continuous sample path variability from the discontinuous jump part

has been emphasized from an asset pricing perspective in various contexts, such as

option pricing, portfolio allocation, and risk management.
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In this study we implement a non-parametric procedure recently developed

separately by Andersen, Bollerslev, and Diebold (2007), Tauchen and Zhou (2006),

and Barndorff-Nielsen and Shephard (2004) was used to measure the continuous

sample path variation and the discontinuous jump part for a sample of fifty Chinese

stocks and four stock and one government bond indexes. Using high-frequency

five-minute stock returns, the distributional properties of jump risk are estimated

and examined. The empirical results suggest that statistically significant jumps

occur, on average, for individual stocks about once every month (8.6% of trading

days). Indexes of equity portfolios generate fewer than eight significant jumps per

year, while an index of government bonds yields ninety significant jumps. Despite

of the relatively low frequency of jump occurrences over the sample period for

individual stocks and equity portfolios, the jump returns are sizeable, relative to

the daily return, accounting for 30% to 50% of changes in total returns. We further

observe stronger own dynamic dependence in realized volatilities across different

asset portfolios than that in their jump components.

When applying the canonical capital asset pricing approach to decomposing

the total systematic risk into jump and continuous risks, market systematic jump

risks are revealed as an important pricing factor for daily returns. The absolute

magnitude of jump beta is, on average, similar to that of the absolute magnitude

for continuous beta across firms. Very low contributions of systematic or non-

systematic jump risk to the total risks across individual stocks over the sample

period are found. The co-existence of the two phenomenon is an indication that
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discontinuities or jump components in the stochastic process of asset pricing are

indeed statistically rare events, but have tremendous impacts on the prices of un-

derlying assets in Chinese markets. Understanding and measuring the catastrophic

feature of jump risks is particularly important and critical to the practice of risk

management relies on the accurate assessment of such unlikely, though foreseeable,

risks in the market.

In estimating a simple linear volatility forecasting model that includes the

continuous sample path and jump variability measures, it is found that most pre-

dictive power comes from the continuous part for equity portfolios denominated

in domestic currency and the government bond portfolio. Accounting for jump

components does improve the performance of volatility forecasting for the equity

portfolio denominated in US dollars.

The empirical results presented here add to the recent discussion of developing

an option market and improving the the effectiveness of risk management for China.

Both tasks critically hinge on better understanding, measurement, and assessment

of the market risks or realized volatilities across time. As a first pass, separating

the continuous sample path variation from the discontinuous part should shed

additional light on the risk analysis and volatility forecasting for Chinese stock

markets.
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Table 3
Summary statistics of daily realized volatilities and jumps for stocks and
indices

RV is the realized volatility measure, BV is the bi-power variation measure, and J̃ is
the positively truncated simple measure of daily volatility due to jumps, defined as J̃t =
max[RVt −BVt, 0]. Except for Skewness, kurtosis, and Ljung-Box statistics, all numbers
are multiplied by 100. The column labeled LB10 gives the Ljung-Box test statistic for up
to tenth order serial correlation.

Mean Std Skew Kurt Min Max LB10

Panel A: Average statistics of Shanghai Stock Exchange Constituents

RV 0.107 0.5367 7.2058 123.4084 0.0486 0.2894 729.9598

RV 1/2 2.7283 1.5007 4.3026 78.9397 1.9305 4.1672 1206.192

BV 0.0821 0.0107 5.0884 45.8009 0.0736 0.0443 843.2683

BV 1/2 2.5334 0.1233 4.3026 78.9397 2.4569 1.8089 1435.531

Panel B: Shanghai Stock Exchange A Share Index

RV 0.0182 0.0256 5.8404 62.070 0.0012 0.3870 1157.54

RV 1/2 1.1886 0.6400 21.368 10.531 0.3481 6.2211 2281.87

J̃ 0.0016 0.0037 5.2775 39.603 0.0000 0.0411 137.05

J̃1/2 0.2532 0.3053 1.836 7.6966 0.0000 2.0278 211.37

Panel C: Shanghai Stock Exchange B Share Index

RV 0.0204 0.0489 7.1998 70.169 0.0003 0.6845 1875.00

RV 1/2 1.1304 0.8756 3.2557 18.169 0.1811 8.2735 2885.62

J̃ 0.0015 0.0051 9.3362 121.450 0.0000 0.0872 276.91

J̃1/2 0.2309 0.3104 2.9742 17.368 0.0000 2.9531 231.85

Panel D: Shanghai Stock Exchange Government Bond Index

RV 0.0001 0.0002 5.6816 41.537 0.0000 0.0021 206.23

RV 1/2 0.0849 0.0545 3.1951 16.079 0.0287 0.4565 473.51

J̃ 0.0000 0.0001 9.8931 120.726 0.0000 0.0020 46.16

J̃1/2 0.0458 0.0407 4.5138 32.897 0.0000 0.4428 146.55

Panel E: Shanghai Stock Exchange 50 Index

RV 0.0180 0.0264 6.7201 76.905 0.0015 0.4118 1104.65

RV 1/2 1.1809 0.6346 2.3507 12.678 0.3929 6.4169 2224.99

J̃ 0.0014 0.0032 5.5664 45.099 0.0000 0.0353 93.36

J̃1/2 0.2350 0.2888 1.7965 7.6163 0.0000 1.8783 135.33
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Table 5
Daily, weekly, and monthly volatility forecasting HAR-RV-J regression

RV t,t+k = β0 + βDRV t + βWRV t−4,t + βMRV t−21,t + βJJt + εt,t+k

RV
1/2
t,t+k = β0 + βDRV

1/2
t + βWRV

1/2
t−4,t + βMRV

1/2
t−21,t + βJJ

1/2
t + εt,t+k

The table reports the OLS estimates for daily (k = 1), overlapping weekly (k=5) and
monthly (k=22) HAR-RV-J volatility forecast regressions. The realized volatility and
jumps are constructed from five-minute returns from January 2004 to October 2007. The
standard errors reported in parenthesis are based on Newey-West/Bartlett correction al-
lowing for serial correlation of up to order 5 (k=1), 10 (k=5), and 44 (k=22), respectively.
The last two rows of each panel labeled R2

HAR−RV−J and R2
HAR are for the HAR-RV-J

model and a typical HAR model with no jumps and with the realized volatilities on the
right side of the regression replaced with the corresponding lagged daily, weekly, and
monthly squared returns.

RVt,t+k RV
1/2
t,t+k

k=1 k=5 k=22 k=1 k=5 k=22

Panel A: Shanghai Stock Exchange A share index

βD 0.543 0.472 0.186 0.542 0.538 0.273
(0.127) (0.065) (0.021) (0.076) (0.046) (0.032)

βW -0.023 -0.096 0.081 0.078 0.006 0.177
(0.077) (0.080) (0.069) (0.071) (0.082) (0.084)

βM 0.386 0.480 0.435 0.288 0.377 0.347
(0.105) (0.088) (0.126) (0.071) (0.084) (0.144)

βJ -0.266 0.091 -0.121 -6.085 -3.228 -8.795
(0.396) (0.248) (0.199) (6.566) (4.250) (5.175)

R2
HAR−RV−J 0.44 0.58 0.51 0.56 0.69 0.58

R2
HAR 0.29 0.29 0.35 0.33 0.36 0.35

Penel B: Shanghai Stock Exchange B share index

βD 0.252 0.373 0.213 0.375 0.493 0.284
(0.072) (0.037) (0.043) (0.045) (0.021) (0.049)

βW 0.401 0.386 0.364 0.342 0.292 0.304
(0.171) (0.162) (0.132) (0.093) (0.099) (0.129)

βM -0.016 -0.025 -0.098 0.056 0.065 0.032
(0.093) (0.108) (0.160) (0.072) (0.082) (0.136)

βJ 2.972 1.178 0.559 27.728 12.531 7.046
(1.125) (0.365) (0.304) (8.277) (4.863) (4.304)

R2
HAR−RV−J 0.48 0.68 0.41 0.58 0.71 0.45

R2
HAR 0.42 0.31 0.22 0.42 0.36 0.23

to be continued.
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Table 5, continued.

RVt,t+k RV
1/2
t,t+k

k=1 k=5 k=22 k=1 k=5 k=22

Panel C: Shanghai Stock Exchange Government Bond Index

βD 0.343 0.321 0.143 0.362 0.414 0.218
(0.114) (0.040) (0.036) (0.073) (0.036) (0.042)

βW 0.161 0.214 0.191 0.188 0.192 0.188
(0.097) (0.092) (0.091) (0.066) (0.074) (0.106)

βM 0.241 0.155 0.01 0.185 0.159 0.046
(0.144) (0.094) (0.132) (0.082) (0.083) (0.150)

βJ -0.313 -0.089 -0.048 -75.522 -15.431 -15.16
(0.141) (0.053) (0.049) (26.920) (11.502) (16.879)

R2
HAR−RV−J 0.11 0.38 0.19 0.19 0.42 0.22

R2
HAR−RV 0.14 0.2 0.13 0.13 0.15 0.11

Panel D: Shanghai Stock Exchange 50 index

βD 0.601 0.493 0.184 0.573 0.556 0.279
(0.145) (0.072) (0.021) (0.085) (0.050) (0.033)

βW -0.023 -0.099 0.041 0.101 0.021 0.126
(0.087) (0.085) (0.058) (0.077) (0.084) (0.069)

βM 0.337 0.446 0.471 0.242 0.337 0.388
(0.095) (0.090) (0.135) (0.064) (0.081) (0.138)

βJ -0.613 0.157 -0.15 -11.968 -3.222 -10.221
(0.447) (0.326) (0.181) (6.144) (4.361) (5.025)

R2
HAR−RV−J 0.46 0.57 0.49 0.56 0.69 0.57

R2
HAR−RV 0.21 0.23 0.26 0.27 0.31 0.29
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Table 6
Daily, weekly, and monthly volatility forecasting HAR-RV-CJ regression

RVt,t+k = β0 + βCDCt + βCWCt−4,t + βCMCt−21,t + βJDJt + βJWJt−4,t + βJMJt−21,t + εt,t+k

RV
1/2
t,t+k = β0 + βCDC

1/2
t + βCWC

1/2
t−4,t + βCMC

1/2
t−21,t + βJDJ

1/2
t + βJWJ

1/2
t−4,t + βJMJ

1/2
t−21,t + εt,t+k

The table reports the OLS estimates for daily (k = 1), overlapping weekly (k=5) and
monthly (k=22) HAR-RV-CJ volatility forecast regressions. The realized volatility and
jumps are constructed from five-minute returns from January 2004 to October 2007. The
weekly and monthly measures are the scaled sums of the corresponding daily measures.
The construction of significant daily jump and continuous sample path variability mea-
sures are described in the text. The standard errors reported in parenthesis are based on
Newey-West/Bartlett correction allowing for serial correlation of up to order 5 (k=1), 10
(k=5), and 44 (k=22), respectively.

RVt,t+k RV
1/2
t,t+k

k=1 k=5 k=22 k=1 k=5 k=22

Panel A: Shanghai Stock Exchange A Share Index

βCD 0.528 0.476 0.176 0.522 0.518 0.238
(0.110) (0.067) (0.018) (0.065) (0.049) (0.030)

βCW -0.028 -0.102 0.078 0.075 0.009 0.180
(0.076) (0.078) (0.063) (0.071) (0.083) (0.085)

βCM 0.382 0.484 0.428 0.294 0.383 0.346
(0.107) (0.091) (0.120) (0.072) (0.086) (0.144)

βJD 0.268 0.495 0.242 0.086 0.259 0.117
(0.290) (0.309) (0.342) (0.126) (0.142) (0.144)

βJW 0.373 0.364 0.083 0.077 0.063 -0.038
(1.053) (0.887) (1.027) (0.167) (0.167) (0.231)

βJM 0.894 1.366 2.64 0.042 0.074 0.246
(1.697) (2.261) (2.732) (0.153) (0.200) (0.267)

R2
HAR−RV−CJ 0.44 0.62 0.52 0.55 0.71 0.59

R2
HAR−RV−J 0.44 0.58 0.51 0.56 0.69 0.58

R2
HAR 0.29 0.29 0.35 0.33 0.36 0.35

Panel B: Shanghai Stock Exchange B Share Index

βCD 0.285 0.367 0.183 0.417 0.502 0.266
(0.079) (0.047) (0.038) (0.048) (0.024) (0.035)

βCW 0.103 0.163 0.127 0.311 0.254 0.237
(0.213) (0.158) (0.085) (0.097) (0.093) (0.058)

βCM 0.034 -0.019 -0.09 0.041 0.03 -0.05
(0.115) (0.123) (0.092) (0.077) (0.085) (0.122)

βJD 1.833 2.436 2.851 0.407 0.533 0.602
(0.377) (0.397) (0.550) (0.113) (0.135) (0.179)

βJW -1.651 -0.669 3.750 -0.054 -0.06 0.455
(2.905) (1.699) (0.657) (0.257) (0.219) (0.127)

βJM 27.642 19.254 15.343 0.732 0.811 1.221
(10.881) (9.132) (7.574) (0.354) (0.363) (0.716)

R2
HAR−RV−CJ 0.45 0.73 0.53 0.57 0.75 0.52

R2
HAR−RV−J 0.48 0.68 0.41 0.58 0.71 0.45

R2
HAR 0.42 0.31 0.22 0.42 0.36 0.23

to be continued.



Table 6, continued.

RVt,t+k RV
1/2
t,t+k

k=1 k=5 k=22 k=1 k=5 k=22

Panel C: Shanghai Stock Exchange Government Bond Index

βCD 0.315 0.317 0.145 0.321 0.421 0.216
(0.107) (0.034) (0.031) (0.070) (0.031) (0.034)

βCW 0.152 0.264 0.253 0.166 0.164 0.219
(0.112) (0.125) (0.079) (0.069) (0.097) (0.090)

βCM 0.228 0.087 -0.108 0.204 0.158 -0.055
(0.136) (0.087) (0.079) (0.081) (0.086) (0.085)

βJD 0.02 0.222 0.089 0.049 0.224 0.104
(0.062) (0.033) (0.024) (0.038) (0.027) (0.024)

βJW 0.154 0.067 -0.078 0.074 0.049 -0.031
(0.189) (0.111) (0.135) (0.079) (0.082) (0.094)

βJM 0.366 0.422 0.730 0.190 0.226 0.378
(0.353) (0.253) (0.403) (0.095) (0.121) (0.206)

R2
HAR−RV−CJ 0.12 0.4 0.25 0.2 0.45 0.28

R2
HAR−RV−J 0.11 0.38 0.19 0.19 0.42 0.22

R2
HAR−RV 0.14 0.2 0.13 0.13 0.15 0.11

Panel D: Shanghai Stock Exchange 50 Index

βCD 0.568 0.502 0.176 0.538 0.548 0.249
(0.127) (0.075) (0.015) (0.076) (0.053) (0.026)

βCW -0.022 -0.103 0.04 0.104 0.021 0.129
(0.087) (0.085) (0.058) (0.077) (0.084) (0.071)

βCM 0.332 0.453 0.476 0.247 0.342 0.395
(0.095) (0.091) (0.133) (0.064) (0.079) (0.138)

βJD -0.319 0.368 -0.334 -0.141 0.048 -0.041
(0.159) (0.312) (0.320) (0.083) (0.099) (0.105)

βJW 0.711 0.585 -2.481 0.019 0.011 -0.083
(1.306) (1.417) (1.881) (0.192) (0.247) (0.287)

βJM 1.898 3.461 7.489 0.191 0.27 0.278
(3.527) (4.537) (6.577) (0.218) (0.281) (0.600)

R2
HAR−RV−CJ 0.45 0.61 0.5 0.56 0.72 0.57

R2
HAR−RV−J 0.46 0.57 0.49 0.56 0.69 0.57

R2
HAR−RV 0.21 0.23 0.26 0.27 0.31 0.29
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Figure 1. Daily realized volatility and jump components
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(a) SSE A Share Index
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(b) SSE B Share Index

The top left figure in each panel graphs daily realized volatility in standard
deviation from, or RV 1/2. The top right figure of each panel shows the jump
component defined in (8), J̃1/2. The bottom left figure of each panel shows the
ZJt statistic with the 0.99 significance level indicated by the horizontal line. The
bottom right figure of each panel graphs the the significant jumps corresponding
to α = 0.99, or J

1/2
t,α . See the text for details.



Figure 1 continued.
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(c) SSE Government Bond Index
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(d) SSE 50 Index

The top left figure in each panel graphs daily realized volatility in standard
deviation from, or RV 1/2. The top right figure of each panel shows the jump
component defined in (8), J̃1/2. The bottom left figure of each panel shows the
ZJt statistic with the 0.99 significance level indicated by the horizontal line. The
bottom right figure of each panel graphs the the significant jumps corresponding
to α = 0.99, or J

1/2
t,α . See the text for details.
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Figure 2. Smoothed Jump Intensity and Jump Size
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The figure graphs the exponentially smoothed average monthly jump intensity
(solid line to the left scale) and sizes (dash line to thr right scale) for the
significant jumps based on α = 0.99. The jump sizes are expressed in standard
deviation form or J

1/2
t,0.99. The top left panel is for Shanghai Stock Exchange A

Share Index; the top right panel is for Shanghai Stock Exchange B Share Index;
the bottom left panel is for Shanghai Stock Exchange Government Bond Index;
and the bottom right panel is for Shanghai Exchange 50 Index.
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Figure 3. Daily, weekly, and monthly realized volatility and HAR-RV-CJ
forecasts
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(a) SSE A Share Index
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(b) SSE B Share Index

The top, middle, and bottom panels show daily (k = 1), weekly (k = 5), and

monthly (k = 22) realized volatility, RV
1/2
t,t+k (solid line to the left scale), and the

corresponding forecasts (dash line to the right scale) from the nonlinear
HAR-RV-CJ model in standard deviation form in equation (23). See the text for
details.
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Figure 3 continued.
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(c) SSE Government Bond Index
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(d) SSE 50 Index

The top, middle, and bottom panels show daily (k = 1), weekly (k = 5), and

monthly (k = 22) realized volatility, RV
1/2
t,t+k (solid line to the left scale), and the

corresponding forecasts (dash line to the right scale) from the nonlinear
HAR-RV-CJ model in standard deviation form in equation (23). See the text for
details.
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