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Abstract  

Using the CES utility function, this paper numerically examines the relationship 

between the optimal tax-and-transfer systems and inequality of earnings under major 

alternative social welfare functions.  In a one-bracket linear tax system, both the optimal 

income tax rate and the government transfer increase when earning inequality expands.  

In the two-bracket case, the optimal lower bracket rate and income threshold do not 

change in a way that is monotonic.  The optimal upper bracket rate and government 

transfer increase with the wage spread.  The lower bracket rate is greater than the upper 

bracket one when the spread is small, but it is larger when the spread is large.  With a 

large elasticity of substitution between consumption and leisure, the two-bracket tax 

structure converges to the one-bracket case when the wage spread becomes large. 
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1.  Introduction 

Rising inequality of earnings is one of the most remarkable characteristics of both 

the American economy and many other economies.  In the past two decades, as described 

by Rosen (2004) in his popular public economics text book, Americans have seen both 

higher relative earnings for those at the top compared to the median as well as lower 

relative earnings for those at the bottom compared to the median.  During this period, 

more serious inequalities have also been seen in many other countries such as China.  

Also during this period, some countries have tightened up eligibility requirements for 

welfare recipients.  For example, the U. S. in 1996 replaced AFDC (Aid to Families with 

Dependent Children) by TANF (Temporary Aid for Needy Families).  At the other end of 

the income spectrum, the U. S. has cut the top personal income tax rate to a relatively 

very low level.  In essence, both the enlarging of inequality and the shrinking of 

redistribution programs have occurred since the 1980’s.  These two changes seem at odds 

with each other.  One might think that welfare programs should be designed so that when 

earning dispersion rises, support for those at the bottom would also rise. 

The economics literature has not addressed this question completely.  Mirrless 

(1971), Stern (1976) and Cooter and Helpman (1974) show that the optimal rate of the 

one-bracket income tax should increase when ability is more unequally distributed among 

people.  However, the research of Helpman and Sdaka (1978) argues that the optimal rate 

does not always increase.  With respect to the relation between growing earning 

inequality and the optimal multiple-bracket income tax, economists have not paid much 

attention. 

The purpose of this paper is to analyze how a tax-and-transfer system featuring a 
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lump-sum transfer and a one-bracket linear income tax or a two-bracket piecewise-linear 

income tax might optimally be altered in response to changes in the underlying inequality 

of earnings.  Using the same constant elasticity of substitution (CES) utility function that 

is commonly used in the literature, we numerically examine the relationship between the 

optimal tax-and-transfer systems and inequality of earnings under major alternative social 

welfare functions (SWF) such as the Bentham SWF and the Nash SWF.  If the tax-and-

transfer system has two income brackets, comparison of the magnitudes of both marginal 

tax rates is of interest. 

In the one-bracket case, we find that both the optimal income tax rate and the 

negative intercept (government transfer) become larger when earning inequality becomes 

more serious.  In the two-bracket case, we find that the marginal rate of the lower bracket 

is greater than that of the upper bracket when the spread of the wage is relatively small, 

but it is larger when the spread is relatively large.  Beyond that, surprisingly, we find that 

with a relatively large elasticity of substitution between consumption and leisure in the 

consumer’s utility function, the two-bracket tax structure converges to the one-bracket 

structure when the wage spread becomes relatively quite large.  Furthermore, though the 

optimal lower bracket rate and income threshold do not show monotonicity, the optimal 

upper bracket rate and government transfer are increasing with the wage spread. 

Our paper is different from the literature in the following respects.  First of all, we 

examine continuous changes of earning inequality in the one-bracket case, while the 

existing literature has investigated only a few discrete cases of earning inequality.  Our 

research thus clarifies any ambiguity in the comparison among those discrete cases.  

Second, we also focus on effects of enlarging earning inequality on the optimal two-



 4 

bracket income tax, effects not addressed in the literature.  We find some new and 

interesting results. 

The paper proceeds as follows.  Section 2 reviews the optimal income tax 

literature;  Section 3 investigates the relationship between earning inequality and the one-

bracket optimal income tax using theoretical distributions of ability;  Section 4 similarly 

studies the relationship between earning inequality and the two-bracket optimal income 

tax,  finally, Section 5 presents our conclusions. 

 

2.  Literature Review 

Early literature calculates the optimal income tax rate assuming a linear income 

tax, a log utility functional form, a lognormal distribution of ability, and a particular 

social welfare function (SWF) to be maximized.  For example, Mirrless (1971) shows 

that the optimal one-bracket income tax rate is increased when ability is more unequally 

distributed.  He uses only two discrete cases of ability dispersion to address this tendency, 

however, one representing a moderate level of dispersion and the other representing an 

extremely high level of dispersion.  Also, he does not investigate this problem based on a 

mean preserving process, so the change in mean wage may have confounded his result. 

Stern (1976) reexamines Mirrless’ simulation results for the optimal one-bracket 

income tax using the same distributions of ability as used by Mirrless (1971) but with a 

different utility functional form, a CES utility function with a smaller elasticity of 

substitution between consumption and leisure.  He also shows that the optimal one-

bracket income tax rate tends to increase when the spread of the ability distribution rises.  
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He still does not control the mean, and he uses exactly the same two discrete cases used 

by Mirrless. 

Cooter and Helpman (1974) also use a CES utility function to examine the 

relationship between the optimal one-bracket income tax and ability dispersion.  They use 

three different types of ability distributions to represent low, medium, and high ability 

inequality.  Thus they have three cases instead of two, and they do keep the mean 

unchanged in their simulations.  Still, however, these distributions differ from each other 

not only in ability dispersion, but also in many other respects.  Their simulation results 

show that the optimal one-bracket income tax rate tends to increase under any of the 

seven social welfare functions used in their paper. 

All three of the above studies find that the optimal one-bracket income tax rate 

increases when ability is more widely distributed, but Helpman and Sdaka(1978) argue 

that theoretically this rate does not always increase and is not determined in general.  

Slemrod and Bakijia (2000) survey the papers mentioned above and tend to discount the 

conclusion of Helpman and Sdaka (1978).  They agree that the optimal one-bracket 

income tax should rise when earning inequality becomes more serious. 

Besides the one-bracket income tax, economists have also studied more 

complicated taxation structures, such as the multiple-bracket income tax.  Simulation 

results of Mirrless (1976) find that rates of the optimal marginal income tax including the 

rate of the top bracket should be greater than zero.  In theoretical work, however, Phelps 

(1973), Sadka (1976), and Seada (1977) argue that the optimal income tax rate of the 

very top person should be zero (because to change the rate from any positive number to 

zero is a Pareto improvement).  Stiglitiz (1982, 1987) also agrees that the person with 
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highest ability should have a zero marginal income tax rate, and the person with lowest 

ability should have a positive marginal income tax.  Basically, economists suggest a zero 

marginal tax rate of the top person because such a tax rate can encourage the richest 

person to work more and thus to improve total social welfare.  The debate is not over.  

Sheshinski (1989) stands out, saying that a smaller upper bracket tax rate with a larger 

lower bracket tax rate is not optimal.  However, Slemrod, Yitzhaki and Mayshar, and 

Lundholm (1994) point out that Sheshinski’s proof is not reasonable.  Furthermore, they 

show in their many simulations that the optimal marginal income tax rate of the upper 

bracket is smaller than that of the lower bracket. 

Whereas that body of work employs two or three levels of ability dispersion, this 

paper investigates the whole spectrum to see how the optimal tax rate is affected by each 

increment to the variance of wages (holding the mean constant).  In addition, whereas 

that body of work looks at the effect of wage dispersion on the one-bracket rate, this 

paper looks at effects on both rates of a two-bracket income tax.  Whereas Slemrod et al 

(1994) consider only one level of wage dispersion and find that the second-bracket rate is 

lower than the first-bracket rate, this paper shows that the reverse pattern occurs for 

higher wage dispersion.  Moreover, evidence suggests that the higher level of wage 

dispersion is now more relevant for the U. S., and especially other countries.  Thus the 

optimal second-bracket rate is likely higher than the low-bracket rate. 

 

3.  Earning Inequality and the Optimal One-Bracket Linear Income Tax 

A.  The Model 
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Consider a simple model with  N  agents who have identical preferences given by 

the utility function: 

U (ci, 1-hi)      (1) 

where  ci  is the consumption of individual  i,  and  hi  is her labor supply.  This function 

is nicely behaved in the sense that  U1 > 0,  U2 > 0,  U11 < 0,  and  U22 < 0.  Each 

individual has a time endowment of one and may split it between leisure and labor.  Each 

individual randomly gets ability and corresponding wage  w  according to a probability 

distribution with  fw(w)  as its p.d.f. and  Fw(w)  as its C.D.F..  Wages accepted by 

individuals are independent of one another.  A government maximizes a particular social 

welfare function using a one-bracket linear tax-and-transfer system that has a lump-sum 

benefit  b  to all individuals and a constant marginal tax rate  t.  We assume that each 

individual uses all her income to consume and does not save, no matter whether she 

receives wage income or government transfer. 

The individual’s budget constraint is  b+(1-t) wihi = ci.  Thus, given  wi ,  b,  and  t,  

individual  i  maximizes: 

U [b+(1-t) wihi, 1-hi]     (2) 

by choosing her labor supply,  hi.  This generates her labor supply function hi(w).  It is 

straightforward to see that individual  i  participates in the labor market as long as: 

U [b+(1-t)wi hi(wi), 1-hi(wi)] ≥ U(b,1)   (3) 

where  U(b,1)  is the utility that individual  i  can get if she does not provide any labor.  

Let  wi*  be the wage at which individual  i  is indifferent between working and not 

working , i.e.: 

U [b+(1-t)wi* hi(wi*), 1-hi(wi*)] = U(b,1)  (4) 
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This  wi*  indicates the no-envy wage developed by Foley (1967) and Varian (1974).  Let: 

Pw = Pr (wi ≥ wi*)     (5) 

be the probability that individual  i  works.  Given that  wi  has a C.D.F.,  Fw(wi),  the 

probability can be written as: 

Pw = 1 – Fw (wi*)     (6) 

Because individuals are ex ante identical and their wages are independent of one another, 

subscript  i  in (1) to (6) can be ignored, so that all individuals have exactly the same 

equations. 

By choosing  b  and  t,  the government maximizes a particular social welfare 

function (SWF) subject to a balanced government budget constraint: 

Σi t wi h(wi) = N b     (7) 

where the left side of the equation is the revenue of the government and the right side is 

the expenditure of the government.  When the population is big enough, equation (7) can 

be written as: 

E [t w h(w)] = b     (8) 

Substituting  w*  into (8), we get: 

Pw E [t w h(w)| w > w*] = b    (9) 

Given  Fw(w)  and  fw(w),  the balanced government budget constraint can be rewritten as: 

t ∫
∞

*w
wh(w) fw(w) dw = b    (10) 

Social welfare functions of the government could include the Bentham SWF and 

the Nash SWF, both of which are utilitarian social welfare functions.  Under each 

different SWF, the optimizing problem of the government is different: 
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1.  The Bentham SWF.  Under this criterion, the government maximizes the un-

weighted sum of everybody’s utility.  CES utility  U (ci, 1-hi)  is homothetic, but the 

marginal utility of consumption  c  declines with the amount of consumption, and so even 

the un-weighted sum of utilities can be raised by redistribution from a person with high  c  

to a person with low  c.1  So, the government is averse to unequal consumption.  The 

government maximizes the expected utility of a single person when the population is big 

enough, because individuals are ex ante identical and their wages are independent of one 

another.  So, the government chooses  t  and  b to maximize: 

E {[U[(1-t)wh(w), 1-h(w)}    (11) 

subject to (8).  Given  Fw(w)  and  fw(w),  the government chooses  t  and  b  to maximize: 

∫
∞

*w
U[(1-t)wh(w), 1-h(w)] fw(w) dw + Fw(w*) U(b, 1)   (12) 

subject to (10). 

2.  The Nash SWF.  Under this criterion, the government is averse to unequal 

utility itself;  it maximizes the un-weighted product of the utility of all individuals.  When 

the population is big enough, the government maximizes the expectation of the log of 

utility of a single person, choosing  t  and  b  to maximize: 

E (log{U[b+(1-t)wh(w), 1-h(w)]})   (13) 

subject to (8).  Given  Fw(w)  and  fw(w),  the government chooses  t  and  b  to maximize: 

∫
∞

*w
log{U[b+(1-t)wh(w), 1-h(w)]} fw(w) dw + Fw(w*) log[U(b, 1)] (14) 

                                                           
1  If income were used to buy two goods  X  and  Y,  where U(X, Y) is a CES or other homothetic utility 
functions, then the marginal utility of income is constant, and redistribution of income cannot raise the un-
weighted sum of utilities.  In our case, however, no redistribution  (t=b=0) would mean that each person 
uses endowment  wi·1 to maximize  U(wihi, 1-hi).  To see that some redistribution can increase welfare in 
this case, consider the simple example where preferences involve inelastic demand for leisure  (1-hi).  Then 
U(wihi, 1-hi) can mean every unequal distribution of consumption  ci = wihi,  and concavity in  c  means that  
b > 0 can help raise total welfare. 



 10 

subject to (10). 

 

B.  The Utility Functional Form 

For comparability to the literature, we choose the CES utility function following 

Cooter and Helpman (1974), Stern (1976), and Slemrod, et al (1994).  Let the functional 

form of (1) be: 

[�ci 
(�-1)/� + (1-�)(1-hi) 

(�-1)/� ] �/(�–1)     (15) 

where  �  is the elasticity of substitution between consumption and leisure, and  �  is the 

weight on consumption.  Given this function, the individual chooses  hi  to maximize: 

{�[b+(1-t)wihi] 
(�-1)/� + (1-�)(1-hi) 

(�-1)/�}  �/(�–1)   (16) 

By solving (16), we get: 

hi(wi) = {1-b[(1-�)/�] 
�
 [(1-t)wi] 

-�}/{1+[(1- �)/�] 
�
 [(1-t)wi] 

1-�}  (17) 

Inequality (3) becomes: 

{�[b+(1-t)wihi(wi)] 
(�-1)/� + (1-�)[1-hi(wi)] 

(�-1)/�} �/(�–1) ≥ U(b, 1)  (18) 

where  U(b, 1) = [� b (
�-1)/� + (1-�)] 

�/(�–1)  is individual  i’s utility when she stays outside 

the labor market.  The wage rate that makes inequality (18) into an equation is: 

wi* = {b 1/� [(1-�)/�]}/(1- t)    (19) 

Individual  i  will work if and only if  wi 
�

 wi*.  Again, since individuals are ex ante 

identical and their wages are independent of one another, subscript  i  in (15) to (19) can 

be ignored, which means that all individuals can have exactly the same equations. 

 

C.  Simulation Results with a Relatively Small  � 

In order to find how the optimal tax-and-transfer system depends on earning 
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inequality, we first show how the values of the optimal one-bracket income tax rate  t  

and government transfer  b  change with a mean-preserving spread of earning inequality.  

Our interpretation is that the increase of the standard deviation of a particular wage 

distribution describes an increased dispersion of earnings only, with no other changes 

(such as the mean wage).  So, each particular value of the standard deviation has at least 

one corresponding pair of values for the optimal tax rate and transfer.  By investigating 

those values, we may see the relationship between the tax-and-transfer program and 

earning inequality. 

Table 1: Key Elasticities for Labor Supply of the Mean Person 2 
(evaluated at  t = 0.224,  b= 0.057, and  �= 0.6136) 

 � = 0.4 � = 1.0 
Uncompensated Labor 

Supply Elasticity 
-0.141 0.133 

Compensated Labor 
Supply Elasticity 

0.232 0.649 

Income Elasticity -0.373 -0.517 

 

In our simulation, we first assume that the wage distribution is lognormal with a 

mean of 0.3969 as found by Lydall (1968) and used by Mirrless (1971) and Stern (1976) 

in their simulations.3  This mean wage rate represents the labor income of the person with 

mean wage who uses all her time endowment to work and does not rest.  Mirrless (1971) 

says that the lognormal distribution is “intended to represent a realistic distribution of 

skills within the population”.  Following Stern (1976), we set the elasticity of substitution 

                                                           
2 The income elasticity is calculated by  (

�
h/
�

b){[ b+(1-t)wh]/h}.  The uncompensated labor supply 
elasticity is not zero when  �  is set to 1.0 (Cobb-Douglas utility) is because our model has non-labor 
income (the government transfer).  The compensated labor supply elasticity is calculated by Slutsky 
equation: compensated elasticity = uncompensated elasticity – income elasticity. 
3 The 0.3969 is the mean of the lognormal distribution used by Mirrless (1971), Stern (1976), and Slemrod 
et al (1994), the corresponding normal distribution of which has a mean of -1 and a variance of 0.39.  
Mirrless (1971) uses this value first.  He, however, does not indicate what the real meaning of the values is 
and only says it is derived from a table of Lydall (1968). 
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between consumption and leisure in the CES utility function at  � = 0.4,  and the 

consumption weight at  �= 0.6136.  Stern (1976) argues that  �  = 0.4 is a more realistic 

value than  �  = 1 used by Mirrless (1971).4  Changes of  �  cause changes of the 

elasticities for labor supply as shown by Table 1. 

Figure 1 

The Optimal One-bracket Income Tax Rate
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In our simulation, we change the standard deviation (s.d.) of the wage gradually 

from 0.1609 to 0.6109 by increments of 0.005, and for each value we calculate the 

optimal tax rate and transfer, keeping the mean wage constant at 0.3969.  So, the 

coefficient of variation (c.v.) of wage changes from 0.405 to 1.539.5  The 0.1609 

represents very moderate earning inequality, as used by Mirrless (1971) and Stern (1976), 

                                                           
4 The reason that 0.6136 is chosen as the value of  α  by Stern (1976) is because when  �  and  �  are set to 
0.5 and 0.6136, a person facing no tax and transfer would to use two thirds of her time endowment to work. 
5 The coefficient of variation of the wage rate in the U. S. varies from 0.590 to 0.888 during the period 
between 1979 and 2004 (by data from CPS MORG 1979-2004, NBER).  That of Mexico varies from 1.561 
to 2.721 during the period between 1995 and 1999 (by data from INEGI).  Assuming that income inequality 
is highly correlated with wage inequality, we expect to see even larger values from most other developing 
countries due to the famous Kuznets Curve (Kuznets, 1955) that says income inequality increases when a 
country starts to be industrialized but finally decreases when it becomes a developed country.  Glaeser 
(2005) confirms this relationship.  An updated Kuznets Curve with 1998 data from the World Bank can be 
found in his paper. 
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while the 0.6109 represents quite serious earning inequality. 6 

Figure 1 shows how the optimal one-bracket income tax rate reacts under both the 

Bentham SWF and the Nash SWF when earning inequality changes from the moderate 

level to the serious level.  We find that under both SWFs, the optimal rate is strictly 

increasing with the standard deviation of wage with no exceptions.  When the spread is 

relatively low, such as 0.1609, the optimal rate is 0.224 under the Bentham SWF (0.397 

under the Nash SWF).7  When the spread is extremely large, such as 0.6109, the optimal 

rate is as big as 0.664 under the Bentham SWF (0.745 under the Nash SWF).  Intuition 

here is straightforward.  When earning inequality becomes more serious, more 

individuals drop into the low income class and depend on government transfer to live.  

Thus, the government needs to collect more revenue from those working to subsidize the 

others. 

Figure 2 

The Optimal Government Transfer
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Beyond this, the optimal rates under the Bentham SWF are always larger than 

                                                           
6 The 0.1609 is the s.d. of the lognormal distribution used by Mirrless (1971), Stern (1976), and Slemrod et 
al (1994), the corresponding normal distribution of which has a mean of -1 and a variance of 0.39. 
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under the Nash SWF.  This is because the Nash SWF puts more weight on the utility of 

the poor than does the Bentham.  Hence, the government needs to have higher tax rates 

that can collect more revenue to finance more transfers to the poor.  With respect to the 

government transfer  b,  it is also strictly increasing with the wage spread under both 

SWFs as shown in Figure 2.  The optimal transfer grows from 0.057 (roughly 14.4% of 

the mean wage) to 0.142 (35.8%) under the Bentham SWF (from 0.098 (24.7%) to 0.155 

(39.1%) under the Nash SWF) when the standard deviation increases from 0.1609 to 

0.6109.  As expected, the optimal transfers under the Nash SWF are all bigger than under 

the Bentham SWF. 

 

D.  Simulation Results with a Relatively Large  �. 

Though Stern (1976) believes that the small value of the elasticity of substitution 

between consumption and leisure  (� = 0.4)  is more realistic than larger values, the value 

of  �  = 1 used by Mirrless (1971) is still of interest at least for comparison.  As shown in 

Figure 3 and 4, we repeat the simulations above with  � = 1.0, while holding other 

parameters unchanged.  Basically, a larger  �  means a larger uncompensated labor supply 

elasticity as shown by Table 1. 

We find that the change of  �  from 0.4 to 1.0 does not affect our conclusion that 

the optimal one-bracket linear income tax rate and government transfer are strictly 

increasing with the wage spread.  However, the increase of  �  shifts down both the 

optimal tax rate and the optimal transfer.  For the s.d. = 0.1609 used by Mirrless (1971) 

and Stern (1976), as shown in Figure 3, the optimal rate drops from 0.224 to 0.126 under 

                                                                                                                                                                             
7 Stern (1976) gets an optimal tax rate of 0.223 under the Bentham SWF.  The rest of the horizontal axis in 
Figure 1 is new. 
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the Bentham SWF.  As shown in Figure 4, the optimal transfer drops from 0.057 to 0.029 

under the Bentham SWF (The optimal rate drops from 0.397 to 0.229, while the optimal 

transfer drops from 0.098 to 0.050 under the Nash SWF).  Obviously, increases of the 

uncompensated labor supply elasticity force the government to implement smaller and 

smaller tax rates.  By using lower tax rates, the government encourages elastic workers to 

work, so that enough revenue can be collected from them to finance government transfers. 

Figure 3 

 

Figure 4 
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individuals have not changed, the budget constraint has changed because of the 

introduction of the second marginal tax rate.  Explicitly, individual  i  now chooses  hi to 

maximize: 

U [b+(1-t1) min(wihi, 
�
)+(1-t2) max(wihi-

�
, 0), 1-hi]   (20) 

where  hi  is the labor supply of individual  i,  t1  is the marginal tax rate of the first 

bracket,  t2  is the marginal tax rate of the second bracket, and  
�
  is the threshold between 

the first income bracket and the second income bracket.  We still use the CES utility 

function (15) as the utility functional form.  Then (20) becomes: 

{�[b+(1-t1)min(wihi, 
�
)+(1-t2)max(wihi-

�
, 0)](

�-1)/�+(1-�)(1-hi)
(�-1)/�}�/(�–1) (21) 

Again, because all individuals are ex ante identical, and their wages are independent of 

one another, subscript  i  can be ignored in (20) and (21).  The government now has four 

policy tools instead of two: one government transfer, one income threshold and two 

marginal income tax rates.  Therefore, under Bentham’s additive SWF, the government 

chooses  t1,  t2,  b,  and  
�
 to maximize: 

∫
∞

*w
U{ b+(1-t1)min[wh(w),

�
]+(1-t2)max[wh(w)-

�
,0],1-h(w)} fw(w)dw 

+ Fw(w*)U[b,1]   (22) 

subject to the balanced budget constraint: 

∫
∞

*w
{ t1 min[wh(w), 

�
] + t2 max[wh(w)-

�
, 0]} fw(w) dw = b  (23) 

where  fw(w)  is the p.d.f. of ability, Fw(w) is the C.D.F of ability, and  w*  is the labor 

market participation condition that fulfills: 

U {b+(1-t1) min[w*h(w*), 
�
]+(1-t2) max[w*h(w*)-

�
, 0], 1-h(w*)} = U(b,1) (24) 

If and only if  wi < w*  , individual  i  stays outside the labor market.  Under the 

multiplicative Nash SWF, the government chooses  t1,  t2,  b,  and  
�
 to maximize: 
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∫
∞

*w
log{U[b+(1-t1)min(wh(w), 

�
)+(1-t2)max(wh(w)-

�
, 0),1-h(w)]} fw(w)dw 

+ Fw(w*)log[U(b,1)]   (25) 

subject to (23). 

Since both the individual’s and the government’s problem are highly non-

differentiable, we follow Slemrod, et al (1994) by using approximating methods to 

simulate the relationship between the optimal two-bracket linear income tax and earning 

inequality.  We draw 2000 points from each lognormal distribution of ability used in this 

section to represent a wage distribution.  Each point accounts for a 0.0005 increase in the 

cumulative frequency of the wage.  The lowest cumulative frequency is 0.0005 while the 

highest is 0.9995.  Without losing generality, we assume only 2000 individuals live in the 

economy, and each is exclusively assigned a wage from the 2000 wages drawn.  In the 

approximation, the individual’s problem does not change at all.  Each individuals still 

maximizes (20) by choosing labor supply  h.  However, the government’s problem 

changes a little bit.  Under the Bentham SWF, the government now chooses  t1,  t2,  b,  

and  
�
  to maximize: 

Σi Ui {b+(1-t1) min[wihi(wi), �]+(1-t2) max[wihi(wi)-�, 0], 1-h(wi)}  (26) 

subject to the balanced government budget constraint: 

Σi { t1 min[wih(wi), � ]+ t2 max[wih(wi)-�, 0]} = 2000 b  (27) 

where  i  ranges from 1 to 2000, and  wi  is the wage of individual  i.  Under the Nash 

SWF, the government chooses  t1,  t2,  b,  and  �  to maximize: 

Σi log {Ui [b+(1-t1) min(wihi(wi), �)+(1-t2) max(wihi(wi)-�, 0), 1-h(wi)]} (28) 

subject to (27).  Actually, the government has only three free choices from the four tools, 

because the fourth tool can be solved out by the balanced government constraint (27).  In 

our simulations, government transfer  b  is solved out, leaving  t1,  t2,  and  �  as the 
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chosen variables. 

 

B.  Simulation Results with a Relatively Small  � 

In this section, we simulate a case where the elasticity of substitution between 

consumption and leisure  (�)  is set to as small as 0.4. 8  This value is from Stern (1976) 

and followed by Slemrod, et al (1994).  In this simulation,  �  is set to 0.6136 following 

Stern (1976) as in the one-bracket cases.9  Table 2 shows the key elasticities for labor 

supply of the mean person when she faces a two-bracket income tax.  Figure 5 shows the 

effect of earning inequality on optimal tax rates under both the Bentham SWF and the 

Nash SWF. 

Table 2: Key Elasticities for Labor Supply of the Mean Person10 
(evaluated at  t1 = 0.234,  t2 = 0.200,  b= 0.059,  

�
 = 0.315,  and  �= 0.6136) 

 � = 0.4 � = 1.0 
Uncompensated Labor 

Supply Elasticity 
-0.139 0.140 

Compensated Labor 
Supply Elasticity 

0.236 0.666 

Income Elasticity -0.375 -0.526 

 

When the wage standard deviation is relatively small, we find the result of 

Slemrod et al (1994) that the optimal lower bracket rate is greater than the upper bracket 

rate.11  When the standard deviation is relatively large, however, then we find the 

                                                           
8 We change  �  around 0.4 from 0.3 to 0.7 by 0.1 to check the sensitivity of our simulation.  Figure A1 in 
Appendix A shows results when  �  is set to 0.3, 0.5, 0.6 and 0.7.  These alternatives do not change our 
conclusion at all. 
9 Slemrod et al (1994) use varied  �  in their simulations.  Particularly, they use 0.41 in their  � =0.4 case, 
which put a less-than-half weight to consumption. 
10 The income elasticity is calculated by  (

�
h/
�

b){[ b+(1-t1)min(wh, �)+(1-t2)max(wh-�, 0)]/h}.  The 
uncompensated labor supply elasticity is not zero when  �  is set to 1.0 (Cobb-Douglas utility) is still 
because of non-labor income (the government transfer).  The compensated labor supply elasticity is 
calculated by Slutsky equation: compensated elasticity = uncompensated elasticity – income elasticity 
11 In the case where  � = 0.1609 and the SWF is the Bentham SWF, Slemrod et al (1994) find that  t1,  t2,  b,  
and  �  equal 0.234, 0.202, 0.058 and 0.300 respectively.  We find that they are 0.234, 0.200, 0.059 and 
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opposite result.12  This “switchover point” appears when the standard deviation is 

somewhere between 0.3109 and 0.3609, for both SWFs, roughly twice as big as the 

0.1609 used by Slemrod, et al (1994) as their only earning inequality level.  The 

coefficient of variation at the switchover point is between 0.783 and 0.909 (for both 

SWFs).13  In contrast, because Slemrod et al (1994) use only s.d. = 0.1609, they find that 

the optimal lower bracket rate is always greater than the upper bracket one.  Surprisingly, 

when we allow for greater possible wage inequality, we show that their result does not 

always hold. 

Figure 5 

 

                                                                                                                                                                             
0.315.  Those two groups of values differ from each other slightly because Slemrod et al use � = 0.41 and 
we use � = 0.6136 following Stern (1976). 
12 In all ten cases including  �  is set to 0.3, 0.4, 0.5, 0.6 and 0.7, we find this switchover appearing between 
0.2109 and 0.4109.  Moreover, six out of ten times, the switchover appears between 0.3109 and 0.3609. 
13 The highest three coefficients of variation of the wage rate of the U. S. between 1979 and 2004 are 0.888 
(1993), 0.802 (2004), and 0.793 (1992), values that are in this interval.  The s.d. = 0.1609 used by Slemrod 
et al (1994) yields a coefficient of variation equal to 0.405, which is outside the range of 0.590 to 0.888 
witnessed in the U. S. from 1979 to 2004. 
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Furthermore, under both SWFs, the optimal upper bracket rate  (t2)  is always 

increasing with the wage spread (for our parameters), whereas the optimal lower bracket 

rate  (t1)  is increasing overall but not around the switchover point.  For example, when 

earning inequality changes from a mild level where the wage spread is 0.1609 used by 

Mirrless (1971), Stern (1976) and Slemrod et al (1994) to the extreme level where the 

spread 0.6109, the optimal upper bracket rate increases monotonically from 0.200 to 

0.682 under the Bentham SWF (from 0.351 to 0.764 under the Nash SWF).  Surprisingly, 

the optimal lower bracket rate does not increase monotonically.  Overall, it increases 

from 0.234 to 0.579 under the Bentham SWF (from  0.410 to  0.662 under the Nash 

SWF).  In the Nash case, the lower bracket rate falls a bit when the standard deviation 

rises from 0.3109 to 0.3609 (where the rate decreases slightly from 0.604 to 0.583).  

Though the lower bracket rate does not have a setback in the Bentham case when  �  = 

0.4, it is quite flat in the switching area, changing from 0.45788 to 0.45849 (and it does 

fall near the switchover point when  �  is set to 0.3 or 0.5). 

Figure 6 
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Regarding the optimal government transfer, as shown in Figure 6, it is strictly 
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increasing with the wage spread under both SWFs. 14.  When the wage standard deviation 

changes from 0.1609 to 0.6109, the optimal transfer grows from 0.059 (roughly 14.9% of 

the mean wage) to 0.138 (34.8%) under the Bentham SWF (from 0.101 (25.4%) to 0.151 

(38.0%) under the Nash SWF).  As shown in Figure 7, the optimal income threshold  (
�
)  

that divides the two brackets does not show a monotone property.  Moreover, both of the 

optimal rates  (t1  and  t2)  under the Bentham SWF are larger than under the Nash SWF, 

while the optimal transfer  (b)  under the Bentham SWF is less than under the Nash SWF, 

a result that is similar to the one-bracket case.  It is still because the Nash SWF puts more 

weight on the poor. 

Figure 7 

 
Several reasons together explain our conclusions regarding an increase in wage 

spread.  First, the reason for the overall increases of both optimal rates is that the 

government has to increase both rates to collect necessary revenue to help support the 

                                                           
14 Please also see simulation results for other values of  �  in Figure A2 of Appendix A. 
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poor when earning inequality become more serious.  This is comparable to the one-

bracket case.  Second, when earning inequality is relatively mild, the population of the 

“middle class” that pays positive net taxes but whose income is still less than or equal the 

threshold  
�
  is relatively large.  For example, the optimal threshold, as shown in Figure 7, 

can be as high as 0.737 under the Bentham SWF (0.796 under the Nash SWF), which are 

almost twice as big as the mean wage, 0.3969.  The result is that 91.2% of the population 

does not pay the upper bracket tax under the Bentham SWF (89.3% under the Nash SWF).  

The large population of the middle class means that the taxable income of this class is 

also large.  Thus the government is able to raise a substantial amount of revenue from the 

middle class in the first bracket (facing  t1).  As a result, the government does not nee d to 

raise substantial revenue from the rich who earn more than the threshold.  Without losing 

revenue, the government can implement smaller upper bracket rates, to encourage labor 

supply of the rich, those who are the most productive workers in the economy.  However, 

as earning inequality rises to a high level, the middle class shrinks rapidly.  As shown in 

Figure 7, the optimal threshold rises gradually and then decreases dramatically from 

0.737 to 0.082 under the Bentham SWF (from 0.796 to 0.088 under the Nash SWF).  The 

population below the threshold cut from 91.2% to 5.0% under the Bentham SWF (from 

89.3% to 6.0% under the Nash SWF).  The majority of the tax base is then shifted from 

the lower bracket to the top bracket.  Finally, since the government is then treated the rich 

as the major target, it is able to give those with low income a smaller lower bracket rate 

that encourages them to work and improve their welfare and therefore total social welfare 

as well. 
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C.  Simulation Results with a Relatively Large  � 

In addition to the simulation with a small  �,  we repeat the simulation approach, 

but changing  �  from 0.4 used by Stern (1976) to 1.0 used by Mirrless (1971).15  Again, 

as shown in Table 2, the increase of  �  means the increase of the uncompensated labor 

supply elasticity. 

Figure 8 

 

As shown in Figure 8 and 9, we find that the optimal upper bracket rate and 

government transfer are increasing with the wage spread under both SWFs.  The optimal 

lower bracket rate, however, is not monotonic.  Figure 10 shows the optimal threshold is 

                                                           
15 Other values of  �,  such as 0.9 and 1.1 that are around 1.0, are also simulated to check the sensitivity of 
our simulation.  To set  �  to be 0.9 or 1.1 does not change our conclusion at all.  Please see the simulation 
results in Table 1 and Table 2 in Appendix B. 
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not monotonic either.  In addition, we still find a switchover point where  t2  rises above  

t1  under both SWFs (when the standard deviation is between 0.2109 and 0.2609 as 

shown in Figure 8).16  The coefficient of variation of the switchover point is between 

0.531 and 0.657.17  Before the switch, the optimal lower bracket rate is greater than the 

optimal upper bracket one.  After the switch, the upper bracket rate is higher. 

Figure 9 

The Optimal Government Transfer (�=1.0)

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61

s.d.

T
ra

n
sf

er

Nash

Bentham

 
Furthermore, we find that the two-bracket tax structure converges completely to 

the one-bracket case under both SWFs when earning inequality becomes quite serious.18  

As shown in Figure 8, the optimal upper bracket rate is always greater than zero and is 

increasing with the wage spread under both SWFs, whereas the optimal lower bracket 

rate stays positive only before the point where s.d. = 0.4109 and c.v. = 1.035 under the 

                                                           
16 In all six cases including  �  = 0.9, 1.0, and 1.1, we find this switchover appearing between 0.2109 and 
0.3609.  Please see these switchovers in Table B1 and B2 of Appendix B. 
17 Most coefficient of variations of wage of the U.S. ranging from 0.590 to 0.888 from 1979 to 2004 are 
included in this interval, while 0.405 generated by s.d. = 0.1609 is still not included. 
18 We find this in all six cases where  �  = 0.9, 1.0 and 1.1.  Please see Table B1 and B2 of Appendix B. 
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Bentham SWF (s.d. = 0.4609 and c.v. 1.161 under the Nash SWF).19  It then drops to 

zero after that.  In addition, when the lower bracket rate drops to zero, the threshold drops 

to zero also.  This means that the two-bracket structure converges to one-bracket.20 

Figure 10 

 
This convergence is actually a special case of the switchover, in which the 

optimal lower bracket rate falls to as small as zero, and the threshold drops to zero also.  

First, as explained in the previous section, when earning inequality is quite serious, the 

optimal lower bracket rate is smaller than the optimal upper bracket rate to help the 

middle class.  Second, workers of the middle class are very elastic because large  �  

means a large uncompensated labor supply elasticity.  This forces the government to use 

an even smaller lower bracket rate to keep the middle class working and to prevent them 

                                                           
19 The coefficients of variation of Mexico from 1995 to 1999 are all larger then the 1.035 of the Bentham 
case (larger then the 1.161 of the Nash case also).  Given that most developing countries have similar c.v. 
with that of Mexico, and most developed countries have similar c.v. with that of the U. S., a one-bracket 
income tax could be more suitable for developing countries than developed countries. 
20 Moreover, the two-bracket structure converges earlier as  �  becomes larger from 0.9 to 1.1 as shown in 
Table B1 and Table B2 of Appendix B. 
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from becoming net welfare recipients.  Last, the pressure of raising revenue drives the 

government to decrease the threshold, and to enlarge the population in the higher bracket, 

to collect more taxes that can be used to finance government transfers.  All these causes 

interacting together imply that the middle class disappears while the two-bracket 

structure of taxation becomes one bracket. 

 

5.  Conclusions 

Consistent with the results of Mirrless (1971), Stern (1976), and Cooter and 

Helpman (1974), our simulations generally favor the conclusion for the one-bracket case 

that both the optimal income tax rate and the government transfer increase when earnings 

become more unequally distributed.  Moreover, we go on to show that the tax rate and 

transfer are strictly increasing with the wage spread.  This conclusion does not depend on 

whether a relatively small or large elasticity of substitution between consumption and 

leisure is used in the simulation. A larger value of the elasticity changes only the 

magnitude but not the trend. 

In the two-bracket case, we similarly find that the optimal upper bracket rate and 

government transfer are also always increasing with the wage spread.  When the 

substitution elasticity is relatively small, the optimal lower bracket rate is increasing with 

wage disparity overall, but not in the area near the switchover point.  It is not monotonic 

when the elasticity is large.  We confirm results of Slemrod et al (1994) for a relatively 

low wage disparity that the upper bracket rate is less than the lower bracket rate.  With a 

wage spread close to that of the U. S. in recent years, however, the result is reversed.  

Beyond this, we also find an interesting phenomenon.  With a relatively large elasticity of 
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substitution between consumption and leisure in the individual’s utility function, the 

optimal two-bracket income tax stucture converges to the one-bracket case when earning 

inequality becomes serious.  Though this can be treated as a special case of the 

switchover, it is still surprising that the lower bracket rate and the income threshold can 

be as low as zero.  Furthermore, this theoretically simulated result may indicate that 

developing countries with serious income inequality may need to implement the one-

bracket income tax structure instead of the multiple-bracket structure. 
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Figure A2 
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Appendix B 
 

Table B1 

 
Table B2 

 

The Optimal Two-bracket Income Tax with Large � under the Bentham SWF 
0.1609 0.2109 0.2609 0.3109 0.3609 s.d. 

σ T1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ 

0.9 0.142 0.119 0.397 0.196 0.171 0.492 0.224 0.252 0.044 0.272 0.304 0.051 0.308 0.350 0.053 

1.0 0.134 0.118 0.287 0.187 0.164 0.498 0.244 0.220 0.539 0.267 0.293 0.045 0.336 0.336 0.041 

1.1 0.128 0.113 0.316 0.181 0.167 0.387 0.235 0.209 0.632 0.286 0.251 0.830 0.000 0.328 0.000 

0.4109 0.4609 0.5109 0.5509 0.6109 s.d. 
σ T1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ 

0.9 0.338 0.390 0.056 0.000 0.417 0.000 0.000 0.444 0.000 0.000 0.467 0.000 0.000 0.487 0.000 

1.0 0.000 0.374 0.000 0.000 0.406 0.000 0.000 0.434 0.000 0.000 0.458 0.000 0.000 0.478 0.000 

1.1 0.000 0.366 0.000 0.000 0.399 0.000 0.000 0.428 0.000 0.000 0.453 0.000 0.000 0.475 0.000 

The Optimal Two-bracket Income Tax with Large � under the Nash SWF 
0.1609 0.2109 0.2609 0.3109 0.3609 s.d. 

σ T1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ 

0.9 0.251 0.223 0.287 0.323 0.287 0.375 0.380 0.344 0.471 0.373 0.426 0.055 0.403 0.466 0.059 

1.0 0.234 0.208 0.307 0.303 0.257 0.514 0.323 0.359 0.047 0.361 0.407 0.053 0.391 0.447 0.058 

1.1 0.221 0.201 0.273 0.288 0.256 0.461 0.344 0.302 0.659 0.351 0.391 0.052 0.000 0.421 0.000 

0.4109 0.4609 0.5109 0.5609 0.6109 s.d. 
σ T1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ t1 t2 Ŷ 

0.9 0.429 0.500 0.062 0.451 0.528 0.065 0.470 0.552 0.069 0.487 0.573 0.072 0.503 0.591 0.075 

1.0 0.417 0.480 0.063 0.000 0.489 0.000 0.000 0.508 0.000 0.000 0.524 0.000 0.000 0.538 0.000 

1.1 0.000 0.450 0.000 0.000 0.473 0.000 0.000 0.492 0.000 0.000 0.508 0.000 0.000 0.522 0.000 
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